1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
| #include "mkldnn.hpp" #include <CL/sycl.hpp>
// namespace sycl = cl::sycl; using namespace mkldnn;
void BN_TEST() { float epsilon = 0.001; int32_t N = 2; int32_t C = 2; int32_t H = 2; int32_t W = 2; int32_t all_element = N * C * H * W;
auto data_t = memory::data_type::bf16; auto dnnl_format = memory::format_tag::nchw;
memory::dims input_dims = {N,C,H,W}; memory::dims weight_dims = {C}; memory::dims bias_dims = {C}; memory::dims output_dims = {N,C,H,W};
auto input_md = memory::desc({input_dims}, data_t, dnnl_format);
auto propagation = prop_kind::forward_training; normalization_flags flags = normalization_flags::use_scale_shift; auto bnorm_fwd_d = batch_normalization_forward::desc(propagation, input_md, epsilon, flags); auto engine = mkldnn::engine(mkldnn::engine::kind::gpu, 0); auto bnorm_fwd_pd = batch_normalization_forward::primitive_desc(bnorm_fwd_d, engine);
auto input_usr_memory = memory({{{input_dims}, data_t, dnnl_format}, engine}); auto output_usr_memory = memory({{{output_dims}, data_t, dnnl_format}, engine}); auto weight_bias_memory = memory(bnorm_fwd_pd.weights_desc(), engine); auto mean_memory = memory(bnorm_fwd_pd.mean_desc(), engine); auto var_memory = memory(bnorm_fwd_pd.variance_desc(), engine);
// sycl_set_mkldnn_buffer cl::sycl::buffer<unsigned short> buff_input(cl::sycl::range<1>(16)); { auto ba = buff_input.get_access<cl::sycl::access::mode::write>(); // Convert float to unsigned short (bf16) for (size_t i = 0; i < 16; i++) { float src = 1; uint32_t res = 0; std::memcpy(&res, &src, sizeof(res)); ba[i] = res >> 16; } } input_usr_memory.template set_sycl_buffer<unsigned short, 1>(buff_input);
cl::sycl::buffer<unsigned short> buff_output(cl::sycl::range<1>(16)); output_usr_memory.template set_sycl_buffer<unsigned short, 1>(buff_output);
cl::sycl::buffer<float> buff_weight(cl::sycl::range<1>(2 * C)); { auto ba = buff_weight.get_access<cl::sycl::access::mode::write>(); ba[0] = 1; ba[1] = 1; ba[2] = 0; ba[3] = 0; // for (size_t i = 0; i < 4; i++) { // ba[i] = i; // } } weight_bias_memory.template set_sycl_buffer<float, 1>(buff_weight);
cl::sycl::buffer<float> buff_mean(cl::sycl::range<1>(2)); mean_memory.template set_sycl_buffer<float, 1>(buff_mean);
cl::sycl::buffer<float> buff_var(cl::sycl::range<1>(2)); var_memory.template set_sycl_buffer<float, 1>(buff_var);
std::shared_ptr<mkldnn::primitive> bn_fwd; auto strm = mkldnn::stream(engine); bn_fwd.reset(new batch_normalization_forward(bnorm_fwd_pd));
std::unordered_map<int, mkldnn::memory> args = { {MKLDNN_ARG_SRC, input_usr_memory}, {MKLDNN_ARG_DST, output_usr_memory}, {MKLDNN_ARG_SCALE_SHIFT, weight_bias_memory}, {MKLDNN_ARG_MEAN, mean_memory}, {MKLDNN_ARG_VARIANCE, var_memory}, };
bn_fwd->execute(strm, args);
// TEST Forward auto input_acc = buff_input.get_access<cl::sycl::access::mode::read>(); printf("in ( "); for (int i = 0; i < 16; i++) { float res = 0; uint32_t tmp = input_acc[i]; tmp <<= 16; std::memcpy(&res, &tmp, sizeof(tmp)); printf("%f ", res); // printf("%f ", (float)input_acc[i]); } printf(")\n");
auto weight_acc = buff_weight.get_access<cl::sycl::access::mode::read>(); printf("weight ( "); for (int i = 0; i < 2 * 2; i++) { printf("%f ", weight_acc[i]); } printf(")\n");
auto mean_acc = buff_mean.get_access<cl::sycl::access::mode::read>(); printf("mean ( "); for (int i = 0; i < 2; i++) { printf("%f ", mean_acc[i]); } printf(")\n");
auto var_acc = buff_var.get_access<cl::sycl::access::mode::read>(); printf("var ( "); for (int i = 0; i < 2; i++) { printf("%f ", var_acc[i]); } printf(")\n");
auto out_acc = buff_output.get_access<cl::sycl::access::mode::read>(); printf("out ( "); for (int i = 0; i < 16; i++) { // Convert unsigned short (bf16) to float float res = 0; uint32_t tmp = out_acc[i]; tmp <<= 16; std::memcpy(&res, &tmp, sizeof(tmp)); printf("%f ", res); // printf("%d ", out_acc[i]); } printf(")\n");
auto pk_bwd = prop_kind::backward; auto grad_output_md = memory::desc({input_dims}, data_t, dnnl_format); auto bwd_desc = batch_normalization_backward::desc(pk_bwd, grad_output_md, input_md, epsilon, flags); auto bn_bwd_pd = batch_normalization_backward::primitive_desc( bwd_desc, engine, bnorm_fwd_pd);
auto grad_input_memory = memory({{{input_dims}, data_t, dnnl_format}, engine}); auto grad_output_memory = memory({{{output_dims}, data_t, dnnl_format}, engine}); auto grad_weight_bias_memory = memory(bn_bwd_pd.diff_weights_desc(), engine);
// sycl_set_mkldnn_buffer grad_input_memory cl::sycl::buffer<unsigned short> buff_grad_input(cl::sycl::range<1>(16)); grad_input_memory.template set_sycl_buffer<unsigned short, 1>(buff_grad_input);
// sycl_set_mkldnn_buffer grad_output_memory cl::sycl::buffer<unsigned short> buff_grad_output(cl::sycl::range<1>(16)); { auto ba = buff_grad_output.get_access<cl::sycl::access::mode::write>(); for (size_t i = 0; i < 16; i++) { float src = 1; uint32_t res = 0; std::memcpy(&res, &src, sizeof(res)); ba[i] = res >> 16; // ba[i] = 1; } } grad_output_memory.template set_sycl_buffer<unsigned short, 1>(buff_grad_output);
// sycl_set_mkldnn_buffer grad_weight_bias_memory cl::sycl::buffer<float> buff_grad_weight_bias(cl::sycl::range<1>(2 * 2)); grad_weight_bias_memory.template set_sycl_buffer<float, 1>(buff_grad_weight_bias);
std::shared_ptr<mkldnn::primitive> bn_bwd; bn_bwd.reset(new batch_normalization_backward(bn_bwd_pd));
std::unordered_map<int, memory> bwd_args = { {MKLDNN_ARG_SRC, input_usr_memory}, {MKLDNN_ARG_SCALE_SHIFT, weight_bias_memory}, {MKLDNN_ARG_MEAN, mean_memory}, {MKLDNN_ARG_VARIANCE, var_memory}, {MKLDNN_ARG_DIFF_DST, grad_output_memory}, {MKLDNN_ARG_DIFF_SRC, grad_input_memory}, {MKLDNN_ARG_DIFF_SCALE_SHIFT, grad_weight_bias_memory}, }; bn_bwd->execute(strm, bwd_args);
auto grad_input_acc = buff_grad_input.get_access<cl::sycl::access::mode::read>(); printf("grad input ( "); for (int i = 0; i < 16; i++) { float res = 0; uint32_t tmp = grad_input_acc[i]; tmp <<= 16; std::memcpy(&res, &tmp, sizeof(tmp)); printf("%f ", res); // printf("%f ", grad_input_acc[i]); } printf(")\n");
auto grad_weight_bias_acc = buff_grad_weight_bias.get_access<cl::sycl::access::mode::read>(); printf("grad weight bais ( "); for (int i = 0; i < 2 * 2; i++) { // float res = 0; // uint32_t tmp = grad_weight_bias_acc[i]; // tmp <<= 16; // std::memcpy(&res, &tmp, sizeof(tmp)); // printf("%f ", res); printf("%f ", grad_weight_bias_acc[i]); } printf(")\n"); }
int main(){ BN_TEST(); printf("BN_TEST DONE!\n"); return 0; }
|